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Abstract
The existence is noted of assemblies of an arbitrary number of complex
oscillators, or equivalently, of an arbitrary even number of real oscillators,
characterized by Newtonian equations of motion (‘acceleration equal force’)
with one-body velocity-dependent linear forces and many-body velocity-
independent cubic forces, all the nonsingular solutions of which are
isochronous (completely periodic with the same period). As for the singular
solutions, as usual they emerge, in the context of the initial-value problem,
from a closed domain in phase space having lower dimensionality.

PACS numbers: 05.45.−a, 02.30.Hq, 02.30.Ik, 45.50.Jf

1. Introduction

This paper advertises the existence of assemblies of an arbitrary number of complex oscillators,
or equivalently of an arbitrary even number of real oscillators, characterized by Newtonian
equations of motion (‘acceleration equal force’) with one-body velocity-dependent linear
forces and many-body velocity-independent cubic forces, all the nonsingular solutions of
which are isochronous (completely periodic with the same period). As for the singular
solutions, as usual they emerge, in the context of the initial-value problem, from a closed
domain in phase space having lower dimensionality.

It seems appropriate to denote such nonlinear oscillators as harmonic, since the original
meaning of this adjective denotes the absence of the cacophony associated with nonperiodic
(including multiply periodic) phenomena. The association of the attributes ‘nonlinear’ and
‘harmonic’—as made in the title of this paper—might however sound oxymoronic due to
the widespread idea that nonlinear many-degrees-of-freedom systems generally behave in a
nonisochronous manner (i.e., not in a completely periodical fashion, or, even if periodically,
then with periods that in the context of the initial-value problem do depend on the initial
data); this conviction indeed causes the two words ‘linear’ and ‘harmonic’ to be often used
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as synonyms. Yet, once their origin is understood, the results reported in this paper—which
clearly question the belief outlined above—shall become quite obvious, even trivial—as is
eventually the case for all mathematically correct results.

The results reported below are a rather immediate consequence of two recent
developments: a ‘trick’ suitable to manufacture/uncover systems possessing many periodic
solutions [1–3], recently utilized in several contexts [4–18]; and the identification of several
many-body systems of Newtonian type amenable to exact treatments via their relation with
matrix evolution equations [19–21, 4]. Indeed, the results reported herein are analogous to,
albeit remarkably more cogent than, some previous findings (see for instance the last two
exercises of [4]; but beware of a misprint there, in equation (5.6.5-41a) 2/p should read p/2);
the purpose and scope of the present paper is to formulate them in a precise manner and
especially to back them with mathematically rigorous proofs (also based on previous results
[22–24]).

Various avatars of these results are stated in section 2 and then proved in section 3. Final
remarks are proffered in section 4.

2. Results

Notation: Throughout this paper, the independent variable t is real (‘time’), and ω is a real
(without loss of generality, positive, ω > 0) constant (‘circular frequency’) to which the
‘period’

T = 2π

ω
(2.1)

is associated.

Lemma 2.1. All nonsingular solutions of the following complex matrix evolution equation,

M̈ − 3iωṀ − 2ω2M = cM3 (2.2)

are completely periodic with period T (isochronous!),

M(t + T ) = M(t). (2.3)

Here (and always below) M ≡ M(t) is a complex square matrix of arbitrary rank and c is an
arbitrary (possibly complex) scalar constant.

The singular solutions of (2.2) are not generic, namely—in the context of the initial-value
problem—they obtain only for special values of the initial data M(0), Ṁ(0) characterized by
the requirement to satisfy certain equalities (equalities, not inequalities—as entailed by the
proof of this lemma 2.1, see section 3).

Corollary 2.2. Likewise, all nonsingular solutions of the following systems of two coupled
real matrix evolution equations,

Ü + 3ωV̇ − 2ω2U = a(U 3 − UV 2 − V 2U − V UV ) − b(U 2V + V 2U − V 3 + UV U)

(2.4a)

V̈ − 3ωU̇ − 2ω2V = b(U 3 − UV 2 − V 2U − V UV ) + a(U 2V + V 2U − V 3 + UV U)

(2.4b)

are completely periodic with period T (isochronous!),

U(t + T ) = U(t) V (t + T ) = V (t). (2.5)
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Here U ≡ U(t), V ≡ V (t) are two real square matrices of arbitrary rank (the same for both
of them) and a, b are two arbitrary real (scalar) constants.

Clearly this corollary 2.2 corresponds to the preceding lemma 2.1 via the identification
of the two matrices U, V as the real and imaginary parts of the matrix M, M = U + iV and
likewise of the two scalar constants a, b as the real and imaginary parts of the constant c,
c = a + ib.

Remark 2.3. A trivial generalization of the result of lemma 2.1 is obtained by replacing the
complex matrix evolution equation (2.2) with, say,

M̈ − 3iωṀ − 2ω2M = MCMCM (2.6)

where M ≡ M(t) is now a rectangular (N × L)-matrix while C is a (complex) constant
rectangular (L×N)-matrix, with N,L two arbitrary positive integers; indeed (2.6) is obtained
from (2.2) via the replacement of M with CM. An additional trivial generalization is obtained
by adding a constant matrix to M . Analogous generalizations can obviously be made of
corollary 2.2.

Proposition 2.4. All the nonsingular solutions of the following complex Newtonian equations
of motion

�̈r(l)

k − 3iω �̇r(l)

k − 2ω2�r(l)
k = c

L∑
l′=1

K∑
k′=1

�r(l′)
k

(
�r(l′)
k′ · �r(l)

k′

)
(2.7)

or equivalently (via �r(l)

k = �u(l)

k + i�v(l)

k , c = a + ib) of the following real Newtonian equations
of motion:

�̈u(l)

k + 3ω �̇v(l)

k − 2ω2 �u(l)
k = a

L∑
l′=1

K∑
k′=1

{
�u(l′)
k

[(
�u(l′)
k′ · �u(l)

k′

)
−

(
�v(l′)
k′ · �v(l)

k′

)]
− �v(l′)

k

[(
�u(l′)
k′ · �v(l)

k′

)

+
(
�v(l′)
k′ · �u(l)

k′

)]}
− b

L∑
l′=1

K∑
k′=1

{
�u(l′)
k

[(
�u(l′)
k′ · �v(l)

k′

)
+

(
�v(l′)
k′ · �u(l)

k′

)]

+ �v(l′)
k

[(
�u(l′)
k′ · �u(l)

k′

)
−

(
�v(l′)
k′ · �v(l)

k′

)]}
(2.8a)

�̈v(l)

k − 3ω �̇u(l)

k − 2ω2 �v(l)
k = b

L∑
l′=1

K∑
k′=1

{
�u(l′)
k

[(
�u(l′)
k′ · �u(l)

k′

)
−

(
�v(l′)
k′ · �v(l)

k′

)]
− �v(l′)

k

[(
�u(l′)
k′ · �v(l)

k′

)

+
(
�v(l′)
k′ · �u(l)

k′

)]}
+ a

L∑
l′=1

K∑
k′=1

{
�u(l′)
k

[(
�u(l′)
k′ · �v(l)

k′

)
+

(
�v(l′)
k′ · �u(l)

k′

)]

+ �v(l′)
k

[(
�u(l′)
k′ · �u(l)

k′

)
−

(
�v(l′)
k′ · �v(l)

k′

)]}
(2.8b)

are completely periodic with period T (isochronous!):

�r(l)

k (t + T ) = �r(l)

k (t) (2.9a)

�u(l)
k (t + T ) = �u(l)

k (t) �v(l)
k (t + T ) = �v(l)

k (t). (2.9b)

Here l = 1, . . . , L and k = 1, . . . ,K , with L and K two arbitrary positive integers,
�r(l)
k ≡ �r(l)

k (t), respectively, �u(l)
k ≡ �u(l)

k (t), �v(l)
k ≡ �v(l)

k (t) denote complex respectively real
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S-vectors, with S an arbitrary positive integer and the dots sandwiched among two vectors
denote the standard Euclidean scalar product in S-dimensional space.

Proposition 2.5. All the nonsingular solutions of the following complex Newtonian equations
of motion:

�̈r(l)

k − 3iω �̇r(l)

k − 2ω2�r(l)
k = c

L∑
l′=1

K∑
k′=1

�r(l
′)

k′

(
�r(l′)
k′ · �r(l)

k

)
(2.10)

or equivalently (via �r(l)

k = �u(l)

k + i�v(l)

k , c = a + ib) of the following real Newtonian equations
of motion

�̈u(l)

k + 3ω�̇v(l)

k − 2ω2 �u(l)

k = a

L∑
l′=1

K∑
k′=1

{
�u(l′)
k′

[(
�u(l′)
k′ · �u(l)

k

)
−

(
�v(l′)
k′ · �v(l)

k

)]
− �v(l′)

k′

[(
�u(l′)
k′ · �v(l)

k

)

+
(
�v(l′)
k′ · �u(l)

k

)]}
− b

L∑
l′=1

K∑
k′=1

{
�u(l′)
k′

[(
�u(l′)
k′ · �v(l)

k

)
+

(
�v(l′)
k′ · �u(l)

k

)]

+ �v(l′)
k′

[(
�u(l′)
k′ · �u(l)

k

)
−

(
�v(l′)
k′ · �v(l)

k

)]}
(2.11a)

�̈v(l)

k − 3ω �̇u(l)

k − 2ω2 �v(l)
k = b

L∑
l′=1

K∑
k′=1

{
�u(l′)
k′

[(
�u(l′)
k′ · �u(l)

k

)
−

(
�v(l′)
k′ · �v(l)

k

)]
− �v(l′)

k′

[(
�u(l′)
k′ · �v(l)

k

)

+
(
�v(l′)
k′ · �u(l)

k

)]}
+ a

L∑
l′=1

K∑
k′=1

{
�u(l′)
k′

[(
�u(l′)
k′ · �v(l)

k

)
+

(
�v(l′)
k′ · �u(l)

k

)]

+ �v(l′)
k′

[(
�u(l′)
k′ · �u(l)

k

)
−

(
�v(l′)
k′ · �v(l)

k

)]}
(2.11b)

are completely periodic with period T (isochronous!), see (2.8), (2.9).

Here we use of course the same notation as in the previous proposition 2.4.

Remark 2.6. These results, proposition 2.4 and 2.5, can obviously be generalized in analogy to
the generalization of lemma 2.1 and of corollary 2.2 entailed by remark 2.3. Let us, moreover,
emphasize the covariant character of these equations of motion, (2.7)–(2.11), entailing their
rotation-invariant character (in S-dimensional space).

Proposition 2.7. All the nonsingular solutions of the following complex Newtonian equations
of motion:

ρ̈nm − 3iωρ̇nm − 2ω2ρnm = c

N∑
j,k=1

{ρnjρjkρkm + [(�rnj ∧ �rjk) · �rkm]

− [ρnj (�rjk · �rkm) + ρjk(�rnj · �rkm) + ρkm(�rnj · �rjk)]} (2.12a)

�̈rnm − 3iω �̇rnm − 2ω2�rnm = +b

N∑
j,k=1

{�rnj [ρjkρkm − (�rjk · �rkm)] + �rjk[ρnjρkm + (�rnj · �rkm)]

+ �rkm[ρjkρjk − (�rnj · �rjk)] − [ρnj (�rjk ∧ �rkm)

+ ρjk(�rnj ∧ �rkm) + ρkm(�rnj ∧ �rjk)]} (2.12b)

are completely periodic with period T (isochronous!).
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Here the indices n,m run from 1 to N , the quantities ρnm ≡ ρnm(t) are N2 complex scalars,
the quantities �rnm ≡ �rnm(t) are N2 complex three-vectors and the dots, respectively, the wedge
symbols sandwiched among two three-vectors, denote the standard scalar, respectively vector
products in three-dimensional space. Note that these equations of motion are covariant,
hence rotation-invariant in three-dimensional space; they are moreover invariant under the
parity transformation if one assumes all the dependent variables ρnm to behave under such
transformation as pseudoscalars, and all the dependent variables �rnm as vectors (or viceversa:
ρnm scalars, �rnm pseudovectors or axial vectors).

It is left as an easy task for the diligent reader to write the analogous real equations of
motion satisfied by the 2N2 real scalars and the 2N2 real three-vectors that constitute the real
and imaginary parts of ρnm and �rnm, as well as the generalizations of these results entailed
by trivial changes of dependent variables analogous to those associated with remarks 2.3
and 2.6.

Proposition 2.8. All the nonsingular solutions of the following complex Newtonian equations
of motion:

ρ̈(nm)(j) − 3iωρ̇(nm)(j) − 2ω2ρ(nm)(j)

= c

N∑
l,p=1

4∑
h,k=1

4∑
q,v=1

[
s
(j)

hk

(
s(h)
qv ρ(nl)(q)ρ(lp)(v) + ŝ(h)

qv �r(nl)(q) · �r(lp)(v)
)
ρ(pm)(k)

+ ŝ
(j)

hk

(
u(h)

qv ρ(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v)

+ w(h)
qv �r(nl)(q) ∧ �r(lp)(v)

)
· �r(pm)(k)

]
(2.13a)

�̈r(nm)(j) − 3iω �̇r(nm)(j) − 2ω2�r(nm)(j)

= c

N∑
l,p=1

4∑
h,k=1

4∑
q,v=1

[
u

(j)

hk

(
s(h)
qv ρ(nl)(q)ρ(lp)(v) + ŝ(h)

qv �r(nl)(q) · �r(lp)(v)
)
�r(pm)(k)

+ û
(j)

hk

(
u(h)

qv ρ(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v) + w(h)

qv �r(nl)(q) ∧ �r(lp)(v)
)
ρ(pm)(k)

+ w
(j)

hk

(
u(h)

qv ρ(nl)(q)�r(lp)(v) + û(h)
qv �r(nl)(q)ρ(lp)(v)

+ w(h)
qv �r(nl)(q) ∧ �r(lp)(v)

)
∧ �r(pm)(k)

]
(2.13b)

are completely periodic with period T (isochronous!).

Here the index j runs from 1 to 4, and the indices n,m run from 1 to N ; the numbers
s
(j)
nm, ŝ

(j)
nm, u

(j)
nm, û

(j)
nm,w

(j)
nm take one of the three values 0, ±1 and we refer for their definition to

equation (2.12) of [21]. Note that these complex Newtonian equations of motion involve
the 4N2 (complex) scalars ρ(nm)(j) ≡ ρ(nm)(j)(t) and the 4N2 (complex) three-vectors
�r(nm)(j) ≡ �r(nm)(j)(t); they are clearly covariant, hence they describe a rotation-invariant
dynamics in three-dimensional space. It is also easily seen from the values of the numbers
s
(j)
nm, ŝ

(j)
nm, u

(j)
nm, û

(j)
nm,w

(j)
nm (many of which vanish [21]) that the equations of motion preserve

parity, provided the quantities ρ(nm)(j) are interpreted as pseudoscalars for j = 1, 3 and as
scalars for j = 2, 4 and likewise the quantities �r(nm)(j) are interpreted as vectors for j = 1, 3
and as pseudovectors (or axial vectors) for j = 2, 4.
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Remark 2.9. It is of course easy to generalize these equations of motion, (2.12) and (2.13),
along the lines suggested by remark 2.3 (namely by performing linear combinations with
constant coefficients of, and constant additions to, the dependent variables), as well as to
obtain (possibly after such generalization) from these complex equations of motion, real
equations of motion by considering separately the real and imaginary parts of all the complex
numbers involved.

The examples of isochronous nonlinear oscillators exhibited above (which certainly are far
from exhausting all the instances in which this phenomenology manifests itself: see section 4)
should suffice to validate the title of this paper, in spite of its paradoxical aspect on which
we have already commented in the introductory section 1. Let us emphasize that, for all
these examples, the sets of initial data that yield singular solutions always have a lower
dimensionality than the sets of (generic!) data that yield isochronous motions; this is clear
from the proofs of these results, which are provided (except for those that are self-evident) in
section 3.

3. Proofs

In this section we prove the results reported in the preceding section 2—except of course for
those which are self-evident.

The proof of the main result, namely lemma 2.1, is an easy consequence of the following:

Lemma 3.1. All solutions of the following matrix evolution equation:

Y ′′ = cY 3 (3.1)

where we denote with τ the (complex) independent variable, the dependent variable Y ≡ Y (τ)

is a (N × N)-matrix (of arbitrary rank N) and of course primes denote differentiations with
respect to the independent variable τ , are meromorphic functions of the variable τ for all
(finite) values of this complex variable.

The proof of this lemma 3.1 is an immediate consequence of the following explicit
expression of the general solution of (3.1) [22]:

Y (τ) = �−1Ỹ (τ )� (3.2a)

Ỹ jk(τ ) = (�Y (0)�−1)jk exp[(ξj − ξ̃k)τ ]
�(Ak − Aj + V + Uτ)�(V )

�(Ak − Aj + V )�(V + Uτ)
. (3.2b)

Here � is the (N × N)-matrix that diagonalizes the matrix T = [Y (0), Y ′(0)], �T �−1 =
diag(t1, . . . , tN ); the 2N scalars ξj , ξ̃j and the N + 2 (N2 − N + 1)-vectors Aj,U, V are
constant (τ -independent) and are fixed by the initial data (for details, see [22]; but beware of a
slight change in notation, corresponding to a rescaling of the dependent variable Y by a factor
(−c/2)1/2), and �(W) is the (N2 − N + 1)-dimensional theta function associated with the
Riemann surface � defined by the spectral curve S (z, h) = det (L(h) − Iz) = 0, where I is
the unit (2N ×2N)-matrix and L(h) is the Lax (2N ×2N)-matrix such that (3.1) is equivalent
to the Lax equation L′ = [L,A]. These two matrices therefore have the explicit block-matrix
expressions [22]

L =
(

Y ′ Y 2 + i21/2hY − h2I

Y 2 − i21/2hY − h2I −Y ′

)
(3.2c)

A =
(

0 Y + i2−1/2hI

−Y + i2−1/2hI 0

)
. (3.2d)
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Note that while this expression (3.2) of the general solution of (3.1) is rather complicated,
it clearly implies that the (N × N)-matrix Y (τ) is a meromorphic function (with only simple
poles), because theta functions are entire and only have simple zeros.

To prove lemma 2.1 one now applies the ‘trick’ [1–18], namely the following simple
change of dependent and independent variables:

M(t) = exp(iωt)Y (τ ) τ = [exp(iωt) − 1]

(iω)
. (3.3)

It is then easy to verify that (3.1) entails (2.2), while, of course, the fact that τ is a periodic
function of t (see the second relation (3.3)) together with lemma 3.1 clearly entails the validity
of lemma 2.1, which is thereby proven.

Propositions 2.4, 2.5 and 2.7 are then an immediate consequence of the fact that the
Newtonian equations of motion (2.7), (2.10) and (2.12) are reductions of the matrix evolution
equation (2.2), corresponding to appropriate parametrizations of the matrix M as shown in
[20] and reported in [4] (see in particular, section 5.6.5 of this book). Likewise, proposition 2.8
is an immediate consequence of the fact that the equations of motion (2.13) are reductions
of the matrix evolution equation (2.2) corresponding to appropriate parametrizations of the
matrix M , as shown in [21].

4. Outlook

The treatment of section 3 entails the possibility to write in explicit form—in the guise of ratios
of multidimensional theta functions, see (3.2) and (3.3)—the solutions of all the Newtonian
equations of motion exhibited in this paper. This opens the way for more detailed analyses
of the actual behaviour of the nonlinear oscillators described by these equations of motion—
including the special reductions of these equations which we have not discussed in this paper
but are immediately entailed by the results of [20] and [4]. We may pursue this line of research
in future publications—perhaps in applicative contexts. In this connection, the existence of a
much simpler subset of solutions of (2.2) should also be noted, namely those corresponding
to the ‘separatrix’ solution of (3.1):

M(t) = exp(iωt)

{
[M(0)]−1 +

( c

2

)1/2 [1 − exp(iωt)]

(iω)

}−1

. (4.1)

This solution of (2.2) is obviously completely periodic with period T , see (2.1), unless it is
singular, and it is singular for real t if and only if the initial data are such that there hold (one
of the) conditions |1 + iωµ−1(2/c)1/2| = 1, where µ denotes (any) one of the eigenvalues of
the matrix M(0).

An analogous treatment to that provided in this paper for nonlinear oscillators
characterized by (linear and) cubic forces can be made for oscillators characterized by (linear
and) quadratic forces. Indeed, there holds in this case an analogous result to lemma 2.1, in the
guise of the following:

Lemma 4.1. All nonsingular solutions of the following complex matrix evolution equation:

M̈ − 5iωṀ − 6ω2M = cM2 (4.2)

or, equivalently, of the following two real matrix evolution equations:

Ü + 5ωV̇ − 6ω2U = a(U 2 − V 2) − b(UV + V U) (4.3a)

V̈ − 5ωU̇ − 6ω2V = b(U 2 − V 2) + a(UV + V U) (4.3b)

are completely periodic with period T (isochronous!).
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The singular solutions of (4.2) and (4.3) are not generic, namely—in the context of the
initial-value problem—they obtain only for special values of the initial data M(0) and Ṁ(0),
characterized by the requirement to satisfy certain equalities. The difference from the case
discussed above (see (2.2) and lemma 2.1) is only in the nature of the singularities: simple
poles in the previous case, double poles in the one considered here, see (4.2) and (4.3).
(Via the ‘trick’, see (3.3), this is, of course, consistent with the expectation, based on the
local analysis of the behaviour of the solution of the nonlinear ODE W ′′ = cWp, that
W ≈ W0(τ − τs)

−γ , γ = 2/(p − 1) in the neighbourhood of a singularity occurring at the
value τ = τs).

The proof of this result, which is closely analogous to that of lemma 2.1, will be given in
a separate paper, together with an analysis of its implications in terms of nonlinear oscillators.

It is easily seen [4] via (an appropriate modification of) the ‘trick’ (3.3) that the following
system of complex evolution equations:

z̈n − i

[
(3 + p)

2

]
ωżn −

[
(1 + p)

2

]
ω2zn =

N∑
m1...mp=1

cnm1...mp

p∏
l=1

zml
n = 1, . . . , N

(4.4)

where N and p are arbitrary positive integers and the Np+1 complex constants cnm1...mp
are

arbitrary as well, feature a lot of completely periodic solutions z(t) ≡ (z1(t), . . . zn(t)) with
period T (isochronous: z(t + T ) = z(t)), including all those which emerge from an open
domain D of initial data z(0), ż(0) (in the neighbourhood of the trivial equilibrium solution
z = ż = 0) having positive (nonvanishing!) measure in the (2N)-dimensional phase space of
such data. The boundary of this domain D is characterized by initial data that yield singular
solutions of (4.4). The discussion of the behaviour of the nonsingular solutions of (4.4) that
emerge from initial data that fall outside the domain D is an interesting open problem; hints
at the rich phenomenology they are likely to feature (including periodic motions with periods
that are an integer multiple of T as well as nonperiodic, possibly chaotic, motions) may be
evinced from some many-body models that have been recently investigated both analytically
and numerically [13, 14].

Note that the result we just stated applies, more generally, to a system characterized
by equations of motion of type (4.4) in which the right-hand sides are replaced by arbitrary
analytic functions Fn(z),

z̈n − i

[
(3 + p)

2

]
ωżn −

[
(1 + p)

2

]
ω2zn = Fn(z) n = 1, . . . , N (4.5a)

provided these functions Fn(z) satisfy the scaling relation

Fn(λz) = λpFn(z) (4.5b)

(the right-hand sides of (4.4) provide an instance of such functions). And, of course, real
evolution equations can be obtained from (4.4) or (4.5) in the standard manner, for instance for
p = 3 (so that the nonlinear part of (4.4) is again cubic) an instance of such equations is the
following system of 2N nonlinear oscillators characterized by the real Newtonian equations
of motion:

�̈un + 3ω�̇vn − 2ω2 �un

=
N∑

m1,m2,m3=1

{(
anm1m2m3 �um1 − bnm1m2m3 �vm1

) (�um2 · �um3 − �vm2 · �vm3

)

− (
anm1m2m3 �vm1 + bnm1m2m3 �um1

) (�um2 · �vm3 + �vm2 · �um3

)}
(4.6a)
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�̈vn − 3ω �̇un − 2ω2 �vn

=
N∑

m1,m2,m3=1

{(
anm1m2m3 �um1 − bnm1m2m3 �vm1

) (�um2 · �vm3 + �vm2 · �um3

)

+
(
anm1m2m3 �vm1 + bnm1m2m3 �um1

) (�um2 · �um3 − �vm2 · �vm3

)}
. (4.6b)

Here N is an arbitrary positive integer, the superimposed arrows denote S-vectors with S also
an arbitrary positive integer, dots sandwiched among vectors denote the standard scalar product
and the 2N4 real constants anm1m2m3 , bnm1m2m3 are all arbitrary. There is then (see exercise
5.6.5–19 of [4]) an open domain of initial data �un(0), �vn(0), �̇un(0), �̇vn(0) in the neighbourhood
of the origin in phase space, �un = �vn = �̇un = �̇vn = 0, having nonvanishing measure in the
phase space of such data, such that all the motions emerging from it are completely periodic
with period T , see (2.1):

�un(t + T ) = �un(t) �vn(t + T ) = �vn(t). (4.7)

But, in contrast to the case of the evolution equations (2.8) and (2.11)—which are clearly
special cases of (4.6)—there is no guarantee in this case that all the nonsingular solutions of
(4.6) be isochronous, namely, that they all satisfy (4.7). For instance the system

z̈1 − 3iωż1 − 2ω2z1 = 2z1z
2
2 (4.8a)

z̈2 − 3iωż2 − 2ω2z2 = 2z2
1z2 (4.8b)

z̈3 − 3iωż3 − 2ω2z3 = (z1 + z2)f (z) (4.8c)

z̈4 − 3iωż4 − 2ω2z4 = z1z2z3 (4.8d)

where f (z) is an arbitrary homogeneous polynomial of degree 2 in z1, z2, z3, clearly belongs
to the class (4.4) with p = 3 (hence to the class (4.6) as well, with S = 1, N = 3). Yet, as
can be easily verified, it possesses the solution

z1(t) = −z2(t) = iω[1 − a exp(−iωt)]−1 (4.9a)

z3(t) = b exp(iωt) (4.9b)

z4(t) = b exp(iωt) log

{
[exp(iωt) − a]

(iω)

}
(4.9c)

z4(t) = ibωt exp(iωt) log

{
[1 − a exp(−iωt)]

(iω)

}
(4.9d)

with a, b arbitrary constants. And it is plain that for b �= 0 this solution z(t) is, as a function
of real t , nonsingular and completely periodic with period T , see (2.1), if |a| > 1 (see (4.9a),
(4.9b), (4.9c)), singular if |a| = 1 (see (4.9a), (4.9c)) and neither singular nor periodic if
|a| < 1 (see (4.9d) which is, of course, equivalent to (4.9c)).

As indicated by example (4.6), there are subcases of the Newtonian equations of motion
(4.4) that can be formulated as covariant (hence rotation-invariant) vector equations in a space
with an arbitrary number of dimensions; moreover, the property of translation invariance
(namely invariance under the transformation z(t) → z(t) + z(0), with z(0) arbitrary but constant,
ż(0) = 0) can as well be enforced by an appropriate choice of the constants cnm1...mp

that appear
in the right-hand side of (4.4). Let us end this paper by noting that, via an appropriate ‘trick’
[19, 4], one can also obtain from (2.2) (as well as from all the relevant equations following it in
section 2), modified versions of these evolution equations which are translation-invariant and
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preserve the property that all their nonsingular solutions are completely periodic with period
T (isochronous: see (2.3)). For instance such a modified version of (2.2) reads

M̈(±) − i

[
(q ± 3)

2

]
ωṀ(+) − i

[
(q ∓ 3)

2

]
ωṀ(−) ∓ ω2(M(+) − M(−))

= ±
( c

2

)
(M(+) − M(−))3 (4.20)

where q is an arbitrary (nonvanishing) integer. Indeed, these two coupled matrix evolution
equations for the two dependent variables M(±) ≡ M(±)(t) (which are clearly invariant under
the ‘matrix translation’ M(±)(t) → M(±)(t) + M(0) with M(0) an arbitrary constant matrix,
Ṁ(0) = 0) obtain, via the definitions

M(±) = (P ± M)

2
P = M(+) + M(−) M = M(+) − M(−) (4.21)

by supplementing the matrix evolution equation (2.2) with the trivial evolution equation

P̈ − iqωṖ = 0 (4.22a)

all solutions of which

P(t) = P0 + P1 exp(iqωt) (4.22b)

are clearly completely periodic with period T , see (2.1).
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Nonlinear harmonic oscillators 10375

[13] Calogero F and Sommacal M 2002 Periodic solutions of a system of complex ODEs. II. Higher periods J.
Nonlinear Math. Phys. 9 1–33

[14] Calogero F, Françoise J-P and Sommacal M 2002 Periodic solutions of a many-rotator problem in the plane: II.
Analysis of various motions J. Nonlinear Math. Phys. at press

[15] Calogero F 2002 A complex deformation of the classical gravitational many-body problem that features a lot
of completely periodic motions J. Phys. A: Math. Gen. 35 3619–27

[16] Calogero F A solvable three-body problem in the plane Phys. Lett. A submitted
[17] Calogero F and Françoise J-P 2002 Nonlinear evolution ODEs featuring many periodic solutions (submitted to

the special issue of Theor. Math. Phys. containing the Proceedings of NEEDS 2002).
[18] Calogero F 2003 Partially Superintegrable (Indeed Isochronous) Systems Are Not Rare: Proc. NATO Advanced

Study Institute (Cadiz, Jun. 2002) (Kluwer: Dordrecht)
[19] Bruschi M and Calogero F 2000 Solvable and/or integrable and/or linearizable N-body problems in ordinary

(three-dimensional) space: I. J. Nonlinear Math. Phys. 7 303–86
[20] Bruschi M and Calogero F 2000 Integrable systems of quartic oscillators Phys. Lett. A 273 173–82
[21] Iona S and Calogero F 2002 Integrable systems of quartic oscillators in ordinary (three-dimensional) space

J. Phys. A: Math. Gen. 35 3091–8
[22] Inozemtsev V I 1990 Matrix analogues of elliptic functions Funct. Anal. Appl. 23 323–5 (Russian original 1989

Funct. Anal. Pril. 23 81–2)
[23] Bruschi M and Calogero F 2000 On the integrability of certain matrix evolution equations Phys. Lett. A 273

167–72
[24] Krichever I M 1981 The periodic non-Abelian Toda chain and its two-dimensional generalization (published as

appendix (pp 82–9) to Dubrovin B A 1981 Theta functions and non-linear equations Russ. Math. Surv. 36
11–92 (Russian original 1981 Uspekhi Mat. Nauk 36 11–80))


